3.1267 \(\int \frac {A+B x}{\sqrt {d+e x} \sqrt {b x+c x^2}} \, dx\)

Optimal. Leaf size=204 \[ \frac {2 \sqrt {-b} B \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{\sqrt {c} e \sqrt {b x+c x^2} \sqrt {\frac {e x}{d}+1}}-\frac {2 \sqrt {-b} \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {\frac {e x}{d}+1} (B d-A e) F\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{\sqrt {c} e \sqrt {b x+c x^2} \sqrt {d+e x}} \]

[Out]

2*B*EllipticE(c^(1/2)*x^(1/2)/(-b)^(1/2),(b*e/c/d)^(1/2))*(-b)^(1/2)*x^(1/2)*(c*x/b+1)^(1/2)*(e*x+d)^(1/2)/e/c
^(1/2)/(1+e*x/d)^(1/2)/(c*x^2+b*x)^(1/2)-2*(-A*e+B*d)*EllipticF(c^(1/2)*x^(1/2)/(-b)^(1/2),(b*e/c/d)^(1/2))*(-
b)^(1/2)*x^(1/2)*(c*x/b+1)^(1/2)*(1+e*x/d)^(1/2)/e/c^(1/2)/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 204, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {843, 715, 112, 110, 117, 116} \[ \frac {2 \sqrt {-b} B \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{\sqrt {c} e \sqrt {b x+c x^2} \sqrt {\frac {e x}{d}+1}}-\frac {2 \sqrt {-b} \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {\frac {e x}{d}+1} (B d-A e) F\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{\sqrt {c} e \sqrt {b x+c x^2} \sqrt {d+e x}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x)/(Sqrt[d + e*x]*Sqrt[b*x + c*x^2]),x]

[Out]

(2*Sqrt[-b]*B*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[d + e*x]*EllipticE[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d
)])/(Sqrt[c]*e*Sqrt[1 + (e*x)/d]*Sqrt[b*x + c*x^2]) - (2*Sqrt[-b]*(B*d - A*e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[1
 + (e*x)/d]*EllipticF[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(Sqrt[c]*e*Sqrt[d + e*x]*Sqrt[b*x + c*
x^2])

Rule 110

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Sqrt[e]*Rt[-(b/d)
, 2]*EllipticE[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/b, x] /; FreeQ[{b, c, d, e, f}, x] &&
NeQ[d*e - c*f, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !LtQ[-(b/d), 0]

Rule 112

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[(Sqrt[e + f*x]*Sqrt[
1 + (d*x)/c])/(Sqrt[c + d*x]*Sqrt[1 + (f*x)/e]), Int[Sqrt[1 + (f*x)/e]/(Sqrt[b*x]*Sqrt[1 + (d*x)/c]), x], x] /
; FreeQ[{b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 116

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d), 2]*E
llipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/(b*Sqrt[e]), x] /; FreeQ[{b, c, d, e, f}, x]
 && GtQ[c, 0] && GtQ[e, 0] && (PosQ[-(b/d)] || NegQ[-(b/f)])

Rule 117

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[(Sqrt[1 + (d*x)/c]
*Sqrt[1 + (f*x)/e])/(Sqrt[c + d*x]*Sqrt[e + f*x]), Int[1/(Sqrt[b*x]*Sqrt[1 + (d*x)/c]*Sqrt[1 + (f*x)/e]), x],
x] /; FreeQ[{b, c, d, e, f}, x] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 715

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(Sqrt[x]*Sqrt[b + c*x])/Sqrt[
b*x + c*x^2], Int[(d + e*x)^m/(Sqrt[x]*Sqrt[b + c*x]), x], x] /; FreeQ[{b, c, d, e}, x] && NeQ[c*d - b*e, 0] &
& NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {A+B x}{\sqrt {d+e x} \sqrt {b x+c x^2}} \, dx &=\frac {B \int \frac {\sqrt {d+e x}}{\sqrt {b x+c x^2}} \, dx}{e}+\frac {(-B d+A e) \int \frac {1}{\sqrt {d+e x} \sqrt {b x+c x^2}} \, dx}{e}\\ &=\frac {\left (B \sqrt {x} \sqrt {b+c x}\right ) \int \frac {\sqrt {d+e x}}{\sqrt {x} \sqrt {b+c x}} \, dx}{e \sqrt {b x+c x^2}}+\frac {\left ((-B d+A e) \sqrt {x} \sqrt {b+c x}\right ) \int \frac {1}{\sqrt {x} \sqrt {b+c x} \sqrt {d+e x}} \, dx}{e \sqrt {b x+c x^2}}\\ &=\frac {\left (B \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {d+e x}\right ) \int \frac {\sqrt {1+\frac {e x}{d}}}{\sqrt {x} \sqrt {1+\frac {c x}{b}}} \, dx}{e \sqrt {1+\frac {e x}{d}} \sqrt {b x+c x^2}}+\frac {\left ((-B d+A e) \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}}\right ) \int \frac {1}{\sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}}} \, dx}{e \sqrt {d+e x} \sqrt {b x+c x^2}}\\ &=\frac {2 \sqrt {-b} B \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{\sqrt {c} e \sqrt {1+\frac {e x}{d}} \sqrt {b x+c x^2}}-\frac {2 \sqrt {-b} (B d-A e) \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}} F\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{\sqrt {c} e \sqrt {d+e x} \sqrt {b x+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.06, size = 209, normalized size = 1.02 \[ \frac {-2 i e x^{3/2} \sqrt {\frac {b}{c}} \sqrt {\frac {b}{c x}+1} \sqrt {\frac {d}{e x}+1} (b B-A c) F\left (i \sinh ^{-1}\left (\frac {\sqrt {\frac {b}{c}}}{\sqrt {x}}\right )|\frac {c d}{b e}\right )+2 i b B e x^{3/2} \sqrt {\frac {b}{c}} \sqrt {\frac {b}{c x}+1} \sqrt {\frac {d}{e x}+1} E\left (i \sinh ^{-1}\left (\frac {\sqrt {\frac {b}{c}}}{\sqrt {x}}\right )|\frac {c d}{b e}\right )+\frac {2 b B (b+c x) (d+e x)}{c}}{b e \sqrt {x (b+c x)} \sqrt {d+e x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x)/(Sqrt[d + e*x]*Sqrt[b*x + c*x^2]),x]

[Out]

((2*b*B*(b + c*x)*(d + e*x))/c + (2*I)*b*B*Sqrt[b/c]*e*Sqrt[1 + b/(c*x)]*Sqrt[1 + d/(e*x)]*x^(3/2)*EllipticE[I
*ArcSinh[Sqrt[b/c]/Sqrt[x]], (c*d)/(b*e)] - (2*I)*Sqrt[b/c]*(b*B - A*c)*e*Sqrt[1 + b/(c*x)]*Sqrt[1 + d/(e*x)]*
x^(3/2)*EllipticF[I*ArcSinh[Sqrt[b/c]/Sqrt[x]], (c*d)/(b*e)])/(b*e*Sqrt[x*(b + c*x)]*Sqrt[d + e*x])

________________________________________________________________________________________

fricas [F]  time = 0.99, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {c x^{2} + b x} {\left (B x + A\right )} \sqrt {e x + d}}{c e x^{3} + b d x + {\left (c d + b e\right )} x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + b*x)*(B*x + A)*sqrt(e*x + d)/(c*e*x^3 + b*d*x + (c*d + b*e)*x^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B x + A}{\sqrt {c x^{2} + b x} \sqrt {e x + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x + A)/(sqrt(c*x^2 + b*x)*sqrt(e*x + d)), x)

________________________________________________________________________________________

maple [A]  time = 0.12, size = 216, normalized size = 1.06 \[ \frac {2 \left (A c e \EllipticF \left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right )-B b e \EllipticE \left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right )+B c d \EllipticE \left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right )-B c d \EllipticF \left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right )\right ) \sqrt {-\frac {c x}{b}}\, \sqrt {-\frac {\left (e x +d \right ) c}{b e -c d}}\, \sqrt {\frac {c x +b}{b}}\, \sqrt {e x +d}\, \sqrt {\left (c x +b \right ) x}\, b}{\left (c e \,x^{2}+b e x +c d x +b d \right ) c^{2} e x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x)

[Out]

2*(A*EllipticF(((c*x+b)/b)^(1/2),(1/(b*e-c*d)*b*e)^(1/2))*c*e-B*EllipticF(((c*x+b)/b)^(1/2),(1/(b*e-c*d)*b*e)^
(1/2))*c*d-B*EllipticE(((c*x+b)/b)^(1/2),(1/(b*e-c*d)*b*e)^(1/2))*b*e+B*EllipticE(((c*x+b)/b)^(1/2),(1/(b*e-c*
d)*b*e)^(1/2))*c*d)*b*(-1/b*c*x)^(1/2)*(-(e*x+d)/(b*e-c*d)*c)^(1/2)*((c*x+b)/b)^(1/2)*(e*x+d)^(1/2)*((c*x+b)*x
)^(1/2)/e/c^2/x/(c*e*x^2+b*e*x+c*d*x+b*d)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B x + A}{\sqrt {c x^{2} + b x} \sqrt {e x + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x + A)/(sqrt(c*x^2 + b*x)*sqrt(e*x + d)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {A+B\,x}{\sqrt {c\,x^2+b\,x}\,\sqrt {d+e\,x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*x)/((b*x + c*x^2)^(1/2)*(d + e*x)^(1/2)),x)

[Out]

int((A + B*x)/((b*x + c*x^2)^(1/2)*(d + e*x)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {A + B x}{\sqrt {x \left (b + c x\right )} \sqrt {d + e x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(e*x+d)**(1/2)/(c*x**2+b*x)**(1/2),x)

[Out]

Integral((A + B*x)/(sqrt(x*(b + c*x))*sqrt(d + e*x)), x)

________________________________________________________________________________________